We are pleased to share our latest paper in Nature on the initiation and propagation of dendrites in lithium metal solid-state cells.
The new imaging study revealed that the initiation and propagation of the dendrite cracks are separate processes, driven by distinct underlying mechanisms. Dendrite cracks initiate when lithium accumulates in sub-surface pores. When the pores become full, further charging of the battery increases the pressure, leading to cracking. In contrast, propagation occurs with lithium only partially filling the crack, through a wedge-opening mechanism which drives the crack open from the rear.
The University hompage features a news story about the article and includes quotes from Dominic Melvin, a DPhil student in the Group, and Prof Sir Peter Bruce.
Read the full article here
Ning, Z., Li, G., Melvin, D.L.R. et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023). https://doi.org/10.1038/s41586-023-05970-4